A high-performance parallel algorithm for nonnegative matrix factorization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simplicial Nonnegative Matrix Tri-factorization: Fast Guaranteed Parallel Algorithm

Nonnegative matrix factorization (NMF) is a linear powerful dimension reduction and has various important applications. However, existing models remain the limitations in the terms of interpretability, guaranteed convergence, computational complexity, and sparse representation. In this paper, we propose to add simplicial constraints to the classical NMF model and to reformulate it into a new mo...

متن کامل

Additive Update Algorithm for Nonnegative Matrix Factorization

Abstract—Nonnegative matrix factorization (NMF) is an emerging technique with a wide spectrum of potential applications in data analysis. Mathematically, NMF can be formulated as a minimization problem with nonnegative constraints. This problem is currently attracting much attention from researchers for theoretical reasons and for potential applications. Currently, the most popular approach to ...

متن کامل

A Convergent Algorithm for Bi-orthogonal Nonnegative Matrix Tri-Factorization

Abstract. We extend our previous work on a convergent algorithm for uni-orthogonal nonnegative matrix factorization (UNMF) to the case where the data matrix is decomposed into three factors with two of them are constrained orthogonally and the third one is used to absorb the approximation error. Due to the way the factorization is performed, we name it as bi-orthogonal nonnegative matrix tri-fa...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

A Parallel Algorithm for Nonnegative Matrix Factorization Based on Newton Iteration

Nonnegative Matrix Factorization (NMF) is a technique to approximate a nonnegative matrix as a product of two smaller nonnegative matrices. The guaranteed nonnegativity of the factors allows interpreting the approximation as an additive combination of features, a distinctive property that other widely used matrix factorization methods do not have. Several advanced methods for computing this fac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM SIGPLAN Notices

سال: 2016

ISSN: 0362-1340,1558-1160

DOI: 10.1145/3016078.2851152